(本题14分)已知函数.(1)若,试用定义证明:在上单调递增;(2)若,当时不等式恒成立,求的取值范围.
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。
已知数列是一个等差数列,且,。(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值.
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小。
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
函数的定义域为,且满足对于任意,有.⑴求的值;⑵判断的奇偶性并证明;⑶如果≤,且在上是增函数,求的取值范围.