(本小题满分12分)已知函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直,函数g(x)=f(x)+-bx.(Ⅰ)求实数a的值;(Ⅱ)设x1,x2 (x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)-g(x2)的最小值.
(本小题满分12分)在△ABC中,角A、B、C的对边分别为a、b、c,且-=(2-)bc,sinA·sinB=,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小; (Ⅱ)求△ABC的面积.
(本小题满分12分)已知.(1)讨论a =" –" 1时,的单调性、极值;(2)求证:在(1)的条件下,;(3)是否存在实数a,使的最小值是3,如果存在,求出a的值;若不存在,请说明理由.
(本小题满分12分)已知函数和.其中.(1)若函数与的图像的一个公共点恰好在x轴上,求的值;w (2)若函数与图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.(3)若和是方程的两根,且满足,证明:当时,.
(本小题满分12分)已知函数.(1)求函数的单调递减区间;(2)当时,求函数的最大值和最小值
(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1//平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.