(本小题满分12分)已知函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直,函数g(x)=f(x)+-bx.(Ⅰ)求实数a的值;(Ⅱ)设x1,x2 (x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)-g(x2)的最小值.
已知数列为等差数列,且 (1)求数列的通项公式; (2)证明:
已知平面向量,,,其中,且函数的图象过点. (1)求的值; (2) 将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值.
已知. (1)求;(2)判断的奇偶性与单调性; (3)对于,当,求m的集合M。
设, (1)若,求a的值;(2)若,求a的值; (3)是否存在实数a使,若存在,求a的值。若不存在,请说明理由。
已知幂函数为偶函数,在区间上是单调增函数, (1)求函数的解析式; (2)设函数,若恒成立,求实数q的取值范围。