随机抽取某中学高一级学生的一次数学统测成绩得到一样本,其分组区间和频数是:,2;,7;,10;,x;[90,100],2.其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.(1)求样本的人数及x的值;(2)估计样本的众数,并计算频率分布直方图中的矩形的高;(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.
(本小题满分12分) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
(本小题满分12分)已知函数 (Ⅰ)求函数的最小正周期。 (Ⅱ)求函数的最大值及取最大值时x的集合。
设函数,其中,。 (1)若,求曲线在点处的切线方程; (2)是否存在负数,使对一切正数都成立?若存在,求出的取值范围;若不存在,请说明理由。
已知分别是椭圆的左、右 焦点,已知 点满足,且。设是上半椭圆上且满足的两点。 (1)求此椭圆的方程; (2)若,求直线AB的斜率。
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为 R万元,且R (1)写出年利润关于年产量的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。 (注:年利润=年销售收入-年总成本)