设(为实常数).(1)当时,证明:不是奇函数;(2)设是奇函数,求与的值;(3)当是奇函数时,研究是否存在这样的实数集的子集,对任何属于的、c,都有成立?若存在试找出所有这样的;若不存在,请说明理由.
(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B.(Ⅰ)求实数k的取值范围;(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
(本题12分)已知函数.⑴若函数的图象过原点,且在原点处的切线斜率是,求的值;⑵若函数在区间上不单调,求的取值范围.
(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.
(本题12分)一个质地均匀的正四面体的四个面上分别标示着数字1、2、3、4,一个质地均匀的骰子(正方体)的六个面上分别标示数字1、2、3、4、5、6,先后抛掷一次正四面体和骰子。⑴列举出全部基本事件;⑵求被压在底部的两个数字之和小于5的概率;⑶求正四面体上被压住的数字不小于骰子上被压住的数字的概率。
(本题12分)已知P:且,已知Q:且.(Ⅰ)在区间(-4,4)上任取一个实数x,求命题“P且Q”为真的概率;(Ⅱ)设在数对中,,,求“事件”发生的概率.