已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。
如图,从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t,问:x取何值时,长方体的容积V有最大值?
在锐角三角形ABC中,∠A,∠B,∠C的对边分别为a,b,c,且b2+c2=bc+a2 (1)求∠A; (2)若a=,求b2+c2的取值范围。
(本题满分16分)设函数R 的最小值为-a,两个实根为、. (1)求的值; (2)若关于的不等式解集为,函数在上不存在最小值,求的取值范围; (3)若,求b的取值范围。
(本题满分16分)已知函数. (1)判断并证明的奇偶性; (2)求证:; (3)已知a,b∈(-1,1),且,,求,的值.
(本题满分16分)函数(). (1)求函数的值域; (2)判断并证明函数的单调性; (3)判断并证明函数的奇偶性; (4)解不等式.