如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.
先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2
一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米. (1)求防洪堤坝的横断面积; (2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?
(2a2)•(3ab2﹣5ab3)
(﹣2ab)(3a2﹣2ab﹣4b2)
计算:.