(本小题满分10分)若数列的前n项和为,且方程有一个根为-1,n=1,2,3...(1)求 ;(2)猜想数列的通项公式,并用数学归纳法证明
相传古代的印度国王要奖赏国际象棋的发明者,问他需要什么.发明者说:陛下,在国际象棋的第一个格子里面放1粒麦子,在第二个格子里面放2粒麦子,第三个格子放4粒麦子,以后每个格子中的麦粒数都是它前一个格子中麦粒数的二倍,依此类推(国际象棋棋盘共有64个格子),请将这些麦子赏给我,我将感激不尽.国王想这还不容易,就让人扛了一袋小麦,但不到一会儿就没了,最后一算结果,全印度一年生产的粮食也不够.国王很奇怪,小小的“棋盘”,不足100个格子,如此计算怎么能放这么多麦子?试用程序框图表示此算法过程.
结合前面学过的算法步骤,利用三种基本逻辑结构画出程序框图,表示用“二分法”求方程x2-2=0(x>0)的近似解的算法.
设计一个算法,求1+2+4+…+249的值,并画出程序框图.
(本小题满分14分)已知函数的反函数为,数列和满足:,;函数的图象在点处的切线在y轴上的截距为.(1)求数列{}的通项公式;(2)若数列的项仅最小,求的取值范围;(3)令函数,,数列满足:,,且,其中.证明:.
(本大题满分13分)在△ABC中,,点B是椭圆的上顶点,l是双曲线位于x轴下方的准线,当AC在直线l上运动时.(1)求△ABC外接圆的圆心的轨迹E的方程;(2)过定点F(0,)作互相垂直的直线l1、l2,分别交轨迹E于点M、N和点R、Q.求四边形MRNQ的面积的最小值.