已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.(1)求证:f(x)是周期为4的周期函数;(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.
已知圆:交轴于两点,曲线是以为长轴,直线:为准线的椭圆.(1)求椭圆的标准方程;(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.
设数列的前n项和为,且满足,n=1,2,3,…….(1)求数列的通项公式;(2)若数列满足,且,求数列的通项公式;(3)设,求数列的前n项和.
己知某公司生产某品牌服装的年固定成木为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每销售一千件的收入为R(x)万元,且(注:年利润=年销售收入一年总成本)(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA. 求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
设函数.(1). 求函数f(x)的最大值和最小正周期.(2). 设A,B,C为ABC的三个内角,若cosB=,,求sinA.