(本小题12分)已知函数的图象与x、y轴分别相交于点A、 B,(、 分别是与x、y轴正半轴同方向的单位向量), 函数 (1) 求k、b的值;(2) 当x满足时,求函数的最小值
已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点, 求面积的最大值.
如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥. (Ⅰ)若点是棱的中点,求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论
已知函数. (Ⅰ)求函数的定义域; (Ⅱ)若,求的值
定义为有限项数列的波动强度. (Ⅰ)当时,求; (Ⅱ)若数列满足,求证:; (Ⅲ)设各项均不相等,且交换数列中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列一定是递增数列或递减数列
已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限. (Ⅰ)求证:以线段为直径的圆与轴相切; (Ⅱ)若,,,求的取值范围.