(本小题满分14分)已知数列{an}是等差数列,{bn}是等比数列,且满足a1+a2+a3=9,b1b2b3=27.若a4=b3,b4-b3=m.(1)当m=18时,求数列{an}和{bn}的通项公式;(2)若数列{bn}是唯一的,求m的值.
设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质. (1)设函数,其中为实数 ①求证:函数具有性质,②求函数的单调区间. (2)已知函数具有性质,给定,,且,若||<||,求的取值范围.
设函数,曲线在点(1,处的切线为. (Ⅰ)求; (Ⅱ)证明:.
一走廊拐角处的横截面如图所示,已知内壁和外壁都是半径为1m的四分之一圆弧,分别与圆弧相切于两点,且两组平行墙壁间的走廊宽度都是1m. (1)若水平放置的木棒的两个端点分别在外壁和上,且木棒与内壁圆弧相切于点设试用表示木棒的长度 (2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.
在中,内角所对的边分别为.已知, (1)求角的大小; (2)若,求的面积.
已知命题指数函数在上单调递减,命题关于的方程的两个实根均大于3.若“或”为真,“且”为假,求实数的取值范围.