三棱锥P—ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证: (1)AO⊥BC (2)PB⊥AC
如图,在四棱锥 O - A B C D 中,底面 A B C D 四边长为1的菱形, ∠ A B C = π 4 , O A ⊥ 底面 A B C D , O A = 2 , M 为 O A 的中点, N 为 B C 的中点.
(Ⅰ)证明:直线 M N / / 平面 O C D ; (Ⅱ)求异面直线 A B 与 M D 所成角的大小; (Ⅲ)求点 B 到平面 O C D 的距离.
已知函数 f x = cos 2 x - π 3 + 2 sin x - π 4 sin x + π 4
(Ⅰ)求函数 f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数 f x 在区间 - π 12 , π 2 上的值域
设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 过点 M 2 , 1 ,且左焦点为 F 1 - 2 , 0
(Ⅰ)求椭圆 C 的方程; (Ⅱ)当过点 P 4 , 1 的动直线 l 与椭圆 C 相交与两不同点 A , B 时,在线段 A B 上取点 Q ,满足 A P ⇀ = Q B ⇀ = A Q ⇀ = P B ⇀ ,证明:点 Q 总在某定直线上.
设数列 { a n } 满足 a 0 = 0 , a n + 1 = c a n 3 + 1 - c , c ∈ N * ,其中 c 为实数. (Ⅰ)证明: a n ∈ [ 0 , 1 ] 对任意 n ∈ N * 成立的充分必要条件是 c ∈ [ 0 , 1 ] .
(Ⅱ)设 0 < c < 1 3 ,证明: a n ≥ 1 - ( 3 c ) n - 1 , n ∈ N * ; (Ⅲ)设 0 < c < 1 3 ,证明: a 1 2 + a 2 2 + . . . . + a n 2 > n + 1 - 2 1 - 3 c , n ∈ N *
设函数 f ( x ) = 1 x ln x ( x > 0 且 x ≠ 1 )
(Ⅰ)求函数 f ( x ) 的单调区间; (Ⅱ)已知 2 1 x > x 2 对任意 x ∈ ( 0 , 1 ) 成立,求实数 a 的取值范围。