(本小题满分14分)已知的三个内角所对的边分别为,向量,,且.(1)求角A的大小; (2)若,求证:为等边三角形.
(本小题满分13分)已知椭圆的离心率为,且过点.(I)求椭圆的标准方程;(II)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设,满足.(i)试证的值为定值,并求出此定值;(ii)试求四边形ABCD面积的最大值.
(本小题满分12分)已知等比数列的前n项和为,且满足.(I)求p的值及数列的通项公式;(II)若数列满足,求数列的前n项和.
(本小题满分12分)在四棱锥,平面ABCD,PA=2.(I)设平面平面,求证:;(II)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为,求的值.
(本小题满分12分)为了参加市中学生运动会,某校从四支较强的班级篮球队A,B,C,D中选出12人组成校男子篮球队,队员来源如下表:(I)从这12名队员中随机选出两名,求两人来自同一个队的概率;(II)比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A队的人数为,求随机变量的分布列和数学期望.
(本小题满分12分)在中,角A,B,C的对边分别为,且成等差数列.(I)若的值;(II)设,求t的最大值.