有红、白两种颜色的小球若干个,已知白球的个数比红球少,但白球的个数的2倍比红球多;若给每个白球都写上数字“2”,给每个红球都写上数字“3”(每个小球只能写上一个数字),结果所有小球写的数字总和为60,那么白球和红球各是多少个?
如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点. (1)求一次函数的解析式; (2)根据图象直接写出的x的取值范围; (3)求△AOB的面积.
(1)解方程: (2)如图,△ABC各顶点的坐标分别为A(4、4),B(-2,2),C(3,0), ①画出它的以原点O为对称中心的△AˊBˊCˊ ②写出 Aˊ,Bˊ,Cˊ三点的坐标。 (3)已知关于x的方程mx2-(m+2)x+2=0(m≠0). ①求证:方程总有两个实数根; ②若方程的两个实数根都是整数,求正整数m的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G. (1)求抛物线的解析式; (2)连接BE,求h为何值时,△BDE的面积最大; (3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求: (1)的长; (2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积; (3)在这个旋转过程中三角板所扫过的图形面积.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=; 参考以上定理和结论,解答下列问题: 设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形. (1)当△ABC为直角三角形时,求b2-4ac的值; (2)当△ABC为等边三角形时,求b2-4ac的值.