已知,命题:对任意,不等式恒成立;命题:存在,使得成立(Ⅰ)若为真命题,求的取值范围;(Ⅱ)当,若且为假,或为真,求的取值范围。(Ⅲ)若且是的充分不必要条件,求的取值范围。
.(本小题满分14分) 已知函数 (Ⅰ)求函数的定义域,并证明在定义域上是奇函数; (Ⅱ)若恒成立,求实数的取值范围; (Ⅲ)当时,试比较与的大小关系
(本小题满分14分) 已知等差数列的公差为, 且, (1)求数列的通项公式与前项和; (2)将数列的前项抽去其中一项后,剩下三项按原来顺序恰为等比数列 的前3项,记的前项和为, 若存在, 使对任意总有恒成立, 求实数的取值范围.K
((本小题满分14分) 已知圆的圆心为,半径为,圆与椭圆:有一个公共点(3,1),分别是椭圆的左、右焦点. (1)求圆的标准方程; (2)若点P的坐标为(4,4),试探究斜率为k的直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.
(本小题满分14分) 图为一简单组合体,其底面ABCD为正方形,平面,, 且, (1)求证://平面; (2)若N为线段的中点,求证:平面;
(本小题满分12分)某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行长期的调查,得到的统计数据如下表所示:
(1)如果随机调查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太积极参加班级工作且学习积极性一般的学生的概率是多少? (2)学生的积极性与对待班级工作的态度是否有关系?说明理由.