某地区举办初中数学联赛,有A,B,C,D四所中学参加,选手中,A,B两校共16名;B,C两校共20名;C,D两校共34名,并且各校选手人数的多少是按A,B,C,D中学的顺序选派的,试求各中学的选手人数.
一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为 ΔABC ,点 B 、 C 、 D 在同一条直线上,测得 ∠ ACB = 90 ° , ∠ ABC = 60 ° , AB = 32 cm , ∠ BDE = 75 ° ,其中一段支撑杆 CD = 84 cm ,另一段支撑杆 DE = 70 cm .求支撑杆上的点 E 到水平地面的距离 EF 是多少?(用四舍五入法对结果取整数,参考数据: sin 15 ° ≈ 0 . 26 , cos 15 ° ≈ 0 . 97 , tan 15 ° ≈ 0 . 27 , 3 ≈ 1 . 732 )
如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点, O 为平面直角坐标系的原点,矩形 OABC 的4个顶点均在格点上,连接对角线 OB .
(1)在平面直角坐标系内,以原点 O 为位似中心,把 ΔOAB 缩小,作出它的位似图形,并且使所作的位似图形与 ΔOAB 的相似比等于 1 2 ;
(2)将 ΔOAB 以 O 为旋转中心,逆时针旋转 90 ° ,得到△ O A 1 B 1 ,作出△ O A 1 B 1 ,并求,出线段 OB 旋转过程中所形成扇形的周长.
(1)如图,已知 ΔABC , P 为边 AB 上一点,请用尺规作图的方法在边 AC 上求作一点 E ,使 AE + EP = AC .(保留作图痕迹,不写作法)
(2)在图中,如果 AC = 6 cm , AP = 3 cm ,则 ΔAPE 的周长是 cm .
如图,在平面直角坐标系中, ΔAOB 的边 OA 在 x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B 作 BE ⊥ x 轴,垂足为 E , tan ∠ BAE = 4 3 ,动点 M 以每秒1个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M 作 x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF 与 ΔAOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) 秒.
(1)求点 B 的坐标;
(2)求 S 关于 t 的函数关系式,并写出自变量 t 的取值范围;
(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M 、 A 、 O 、 P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具 m 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?