如图,在四棱柱中,底面是等腰梯形,,是线段的中点.(Ⅰ)求证:;(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.
已知,,且与夹角为120°求: (1); (2); (3)与的夹角。
对定义在上,并且同时满足以下两个条件的函数称为函数. ①对任意的,总有; ②当时,总有成立. 已知函数与是定义在上的函数. (1)试问函数是否为函数?并说明理由; (2)若函数是函数,求实数组成的集合.
设是实数,, (1)已知是奇函数,求; (2)用定义证明:对于任意在上为增函数.
已知函数的定义域是(0,+∞),且满足, ,如果对于,都有. (1)求的值; (2)解不等式.
求函数的值域和单调区间