如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.(1)求这段时间的最大温差;(2)写出这段曲线的函数解析式.
设函数,; (1)求证:函数在上单调递增; (2)设,,若直线轴,求两点间的最短距离.
数列前项和,数列满足(), (1)求数列的通项公式; (2)求证:当时,数列为等比数列; (3)在题(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围.
函数(为常数)的图象过原点,且对任意总有成立; (1)若的最大值等于1,求的解析式; (2)试比较与的大小关系.
在中,满足的夹角为,是的中点, (1)若,求向量的夹角的余弦值;. (2)若,点在边上且,如果,求的值。
已知函数的定义域为, (1)求; (2)若,且是的真子集,求实数的取值范围.