(本小题满分12分)已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点.(1)求椭圆M的标准方程;(2)设点N(t,0)是一个动点,且,求实数t的取值范围.
已知椭圆的离心率,短轴长为. (Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
(本小题满分12分)如图,四边形ABCD是边长为1的正方形, ,,且MD=NB=1,E为BC的中点 (1)求异面直线NE与AM所成角的余弦值 (2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;
(本小题满分12分)某批发市场对某商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (2)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
(本小题满分12分)已知等差数列为递增数列,且是方程的两根,数列的前项和; (1)求数列和的通项公式; (2)若,为数列的前n项和,证明: