如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.(Ⅰ)求证:直线BC1//平面AB1D;(Ⅱ)求二面角B1—AD—B的大小;(Ⅲ)求三棱锥C1—ABB1的体积.
如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求和线段的长。
已知:如图,等腰中,的平分线交于D,求证:(1)BD=BC;(2)
(10分) 已知:如图,设P为椭圆上的任意一点,过点P作椭圆的切线,交准线m于点Z,此时FZ⊥FP,过点P作PZ的垂线交椭圆的长轴于点G,椭圆的离心率为e,求证:FG=e·FP
(10分)如图,已知的两条角平分线和相交于H,,F在上,且.(I) 证明:B,D,H,E四点共圆:(II) 证明:平分。
已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长.