如图,已知椭圆(a>b>0)过点(1,),离心率为,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.(1)求椭圆的标准方程.(2)设直线PF1、PF2的斜率分别为k1、k2.(ⅰ)证明:=2.(ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.
已知 (1)求函数在上的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.
已知椭圆经过点,离心率为,过点 的直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求的取值范围.
已知 (1)求证:向量与向量不可能平行; (2)若,且,求的值.
已知单调递增的等比数列满足:,且是的等差中项. (1)求数列的通项公式; (2)若,,求使成立的正整数的最小值.
在四棱锥中,,平面,为的中点,,. (1)求四棱锥的体积; (2)若为的中点,求证:平面平面.