(理科)已知椭圆C:的离心率为,且经过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求证:直线过定点.
已知函数(为实数,,), (Ⅰ)若, 且函数的值域为,求的表达式; (Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围; (Ⅲ)设,,,且函数为偶函数,判断是 否大于?
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量件之间的关系式为: ,每件产品的售价与产量之间的关系式为: . (Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式; (Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
已知(mR) (Ⅰ)当时,求函数在上的最大,最小值。 (Ⅱ)若函数在上单调递增,求实数的取值范围;
在△ABC中,、、分别是角、、的对边,且. (Ⅰ)求角的大小; (Ⅱ)若,求△ABC的面积.
函数是定义在(-1,1)上的单调递增的奇函数,且 (Ⅰ)求函数的解析式; (Ⅱ)求满足的的范围;