(本小题满分13分)已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点.(1)求的方程;(2)以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.
(本小题满分14分)已知函数,若在=1处的切线方程为。 (1) 求的解析式及单调区间; (2) 若对任意的都有≥成立,求函数=的最值。
(本小题满分13分)在中,三边长分别为.(1)求的值;(2)求的值.
(本小题满分13分)已知全集,集合,,.(1)求; (2)若,求、的值.(3)若一个根在区间内,另一根在区间内,求的取值范围.
(本小题满分12分)已知向量,,设函数 , (1)求的最小正周期与单调递减区间。 (2)在中,、、分别是角、、的对边,若,,的面积为,求的值。
(本小题满分14分)已知函数 (I)求曲线处的切线方程; (Ⅱ)求证函数在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)(III)当试求实数的取值范围。