(本小题满分14分)设函数().(1)当时,求过点且与曲线相切的切线方程;(2)求函数的单调递增区间;(3)若函数有两个极值点,,且,记表示不大于的最大整数,试比较与的大小.
在中,角所对的边分别是,已知.(1)若的面积等于,求;(2)若,,求的面积.
设不等式的解集为,.(Ⅰ)证明:;(Ⅱ)比较与的大小,并说明理由.
已知曲线的直角坐标方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.是曲线上一点,,将点绕点逆时针旋转角后得到点,,点的轨迹是曲线.(Ⅰ)求曲线的极坐标方程.(Ⅱ)求的取值范围.
如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分.(Ⅰ)证明:是⊙的切线(Ⅱ)如果,求.
已知函数().(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;(Ⅱ)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;(Ⅲ)设各项为正数的数列满足,(),求证:.