已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且,点在该椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切圆的方程.
求值:1);2)
若集合,且,求实数的值;
本小题满分13分)已知圆,△ABC内接于此圆,A点的坐标(3,4),O为坐标原点.(Ⅰ)若△ABC的重心是G(,2),求BC中点D的坐标及直线BC的方程;(Ⅱ)若直线AB与直线AC的倾斜角互补,求证:直线BC的斜率为定值.
(本小题满分13分)已知直线,圆.(Ⅰ)证明:对任意,直线恒过一定点N,且直线与圆C恒有两个公共点; (Ⅱ)设以CN为直径的圆为圆D(D为CN中点),求证圆D的方程为:(Ⅲ)设直线与圆的交于A、B两点,与圆D:交于点(异于C、N),当变化时,求证为AB的中点.
(本小题满分13分)如图,在直三棱柱(侧棱垂直于底面的棱柱)中, , , , ,点是的中点. (Ⅰ) 求证:∥平面;(Ⅱ)求AC1与平面CC1B1B所成的角.