某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价格分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。(1)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案;(2)若商场销售一台甲种电视机可获利150元,乙种电视机可获利200元,丙种电视机可获利250元,为使销售时获利最多,应选择哪种进货方案?
已知:如图,Rt△ABC中,∠A=900。(1)求作:⊙O,使圆心在AC上,且与AB、BC相切;(2)若∠B=600,AC=,求⊙O的半径。
先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值。
为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+2+22+23+…+22014的值是
如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时,四边形PQAB为平行四边形?(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.