观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A、B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?
先化简,再求值: ( 2 a − 1 ) 2 − 2 ( a + 1 ) ( a − 1 ) − a ( a − 2 ) ,其中 a = 2 + 1 .
为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
如图,四边形 ABCD 是正方形, ΔEBC 是等边三角形.
(1)求证: ΔABE ≅ ΔDCE ;
(2)求 ∠ AED 的度数.
如图,正方形 ABCD 的边长为1,点 E 为边 AB 上一动点,连接 CE 并将其绕点 C 顺时针旋转 90 ° 得到 CF ,连接 DF ,以 CE 、 CF 为邻边作矩形 CFGE , GE 与 AD 、 AC 分别交于点 H 、 M , GF 交 CD 延长线于点 N .
(1)证明:点 A 、 D 、 F 在同一条直线上;
(2)随着点 E 的移动,线段 DH 是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连接 EF 、 MN ,当 MN / / EF 时,求 AE 的长.
如图, ΔAOB 的顶点 A 、 B 分别在 x 轴, y 轴上, ∠ BAO = 45 ° ,且 ΔAOB 的面积为8.
(1)直接写出 A 、 B 两点的坐标;
(2)过点 A 、 B 的抛物线 G 与 x 轴的另一个交点为点 C .
①若 ΔABC 是以 BC 为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线 G 向下平移4个单位后,恰好与直线 AB 只有一个交点 N ,求点 N 的坐标.