某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值. (1)方程有两个相等的实数根; (2)方程有两个相反的实数根; (3)方程的一个根为0.
用适当的方法解下列方程(每小题4分,共16分) (1)(3x-1)2=(x+1)2 (2) (3)用配方法解方程:x2-4x+1=0; (4)用换元法解方程:(x2+x)2+(x2+x)=6
如图,以直角坐标系的原点O为圆心作⊙O,点M、N是⊙O上的两点,M(-1,2),N(2,1) (1)试在x轴上找点P使PM+PN最小,求出P点的坐标; (2)若在坐标系中另有一直线AB,A(10,0),点B在y轴上,∠BAO=30°,⊙O以0.2个单位/秒的速度沿x轴正方向运动,问圆在运动过程中与该直线有公共点的时间有长?
如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE. (1)求证:DE=DC. (2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由.