关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?
(本小题满分14分)已知有(1)判断的奇偶性;(2)若时,证明:在上为增函数;(3)在条件(2)下,若,解不等式:
(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.(1)试确定、的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率.
(本小题满分12分)已知函数.(Ⅰ)若,,求函数f(x)的值; (Ⅱ)求函数f(x)的最小正周期和值域.
已知⊙的半径是, 它的内接三角形中, 有成立,求角的大小及三角形面积的最大值.
已知 (1) 求的值. (2) 求 的值.