(本小题满分14分)设,,且 (Ⅰ)是否为的极值点?如果是,并求a; (Ⅱ)若在上恒成立,求实数a的取值范围; (Ⅲ) 使得成立,求的最小值
设数是等差数列,前n项和为,是单调递增的等比数列,是与的等差中项,若当时,恒成立,则m的最小值为.
如图为函数的部分图象,ABCD是矩形,A,B在图像上,将此矩形绕x轴旋转得到的旋转体的体积的最大值为
(本小题14分)已知函数,,. (1)求函数的极值点; (2)若在上为单调函数,求的取值范围; (3)设,若在上至少存在一个,使得成立,求的取值范围.
(本小题13分)已知,函数且,且. (1)如果实数满足且,函数是否具有奇偶性? 如果有,求出相应的值;如果没有,说明原因; (2)如果,讨论函数的单调性。
(本小题12分)已知圆C:,其中为实常数. (1)若直线l:被圆C截得的弦长为2,求的值; (2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求的取值范围.