(本小题满分14分)椭圆()过点,且离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)设动直线与椭圆相切于点且交直线于点,求椭圆的两焦点、到切线的距离之积;(Ⅲ)在(Ⅱ)的条件下,求证:以为直径的圆恒过点.
设函数 (Ⅰ)求的值域 (Ⅱ)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值
(1)已知直线经过点P(-2,1),且点A(-1,-2)到的距离为1,求直线的方程。 (2)已知过点A(2,-1)的圆与直线x+y=1相切,且圆心在直线y=-2x上,求圆的方程。
若双曲线的右焦点恰好在抛物线的准线上,求P的值:
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(c>0)的准线与x轴相交于点A,,过点A的直线与椭圆相交于P,Q两点, (1)求椭圆的离心率及方程。 (2)若·,求直线PQ的方程。 (3)设,过点P且平行于准线l的直线与椭圆相交于另一点M,证明