(本小题满分14分)设函数.(1)当函数在定义域内为增函数时,求的取值范围;(2)设是曲线上的两个不同点,且曲线在两点处的切线均与轴平行,直线的斜率为,是否存在使得,若存在,请求出的值,若不存在,请说明理由.
已知函数(且).(1)求函数的单调区间;(2)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”. 试问:函数是否存在“中值相依切线”,请说明理由.
已知椭圆C: (a>b>0)的离心率为,且经过点P(1,)。(1)求椭圆C的方程;(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点? (3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。
已知单调递增的等比数列满足:,且是和的等差中项.(1) 求数列的通项公式;(2) 令,,求使成立的最小的正整数.
如图,多面体ABCDS中,面ABCD为矩形, ,(1)求证:CD;(2)求二面角A—SB—D的余弦值.
为把中国武汉大学办成开放式大学,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者从事兼职导游工作,将这20志愿者的身高编成如下茎叶图(单位:厘米)若身高在175cm及其以上定义为“高个子”,否则定义为“非高个子”且只有文学院的“高个子”才能担任兼职导游。(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少(3)若从所有“高个子”中选3名志愿者。用表示所选志愿者中能担任“兼职导游”的人数,试写出的分布列,并求的数学期望