如图,直线y=mx与双曲线y=相交于A,B两点,A点坐标为(1,2).(1)求反比例函数的解析式;(2)根据函数图像直接写出当mx>时,x的取值范围;(3)计算线段AB的长.
已知,求的值.
解方程:
已知直线分别与y轴、x轴相交于A、B两点,与二次函数的图像交于A、C两点.(1)当点C坐标为(,)时,求直线AB的解析式; (2)在(1)中,如图,将△ABO沿y轴翻折180°,若点B的对应点D恰好落在二次函数的图像上,求点D到直线AB的距离;(3)当-1≤x≤1时,二次函数有最小值-3,求实数m的值.
如图,在△ABC中,∠C=90°,CD⊥AB,垂足为D,AC=20,BC=15.动点P从A开始,以每秒2个单位长的速度沿AB方向向终点B运动,过点P分别作AC、BC边的垂线,垂足为E、F.(1)求AB与CD的长;(2)当矩形PECF的面积最大时,求点P运动的时间t;(3)以点C为圆心,r为半径画圆,若圆C与斜边AB有且只有一个公共点时,求r的取值范围.
东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数.(1)试求y与x的函数关系式;(2)为了使每月获得利润为144元,问商品应定为每件多少元?(3)为了获得了最大的利润,商品应定为每件多少元?