如图,OC是∠AOB的角平分线,P是OC上一点,PE⊥OA交OA于E,PF⊥OB 交OB于F,Q是OC上的另一点,连接QE,QF.求证:QE=QF.
(本小题满分7分)(1) 解不等式组(2)已知:如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.
(本小题满分7分)(1)计算:计算(2) 已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
(本小题满分10分)如图,已知抛物线经过A(-2,0),B(-3,3) 及原点,顶点为.(1)求抛物线的解析式;(2)若点在抛物线上,点在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为,是否存在点,使得以、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分11分)已知直线与轴轴分别交于点A和点B,点B的坐标为(0,6)(1)求的值和点A的坐标;(2)在矩形OACB中,点P是线段BC上的一动点,直线PD⊥AB于点D,与轴交于点E,设BP=,梯形PEAC的面积为。①求与的函数关系式,并写出的取值范围;②⊙Q是△OAB的内切圆,求当PE与⊙Q相交的弦长为2.4时点P的坐标。
(本题8分)儿童商场购进一批型服装,销售时标价为75/件,按8折销售仍可获利50%,商场现决定对型服装开展促销活动,每件在8折的基础上再降价元销售,已知每天销售数量(件)与降价(元)之间的函数关系式为(>0).(1)求型服装的进价;(2)求促销期间每天销售型服装所获得的利润的最大值.