已知圆的圆心在直线上,且与轴交于两点,.(Ⅰ)求圆的方程;(Ⅱ)求过点的圆的切线方程;(Ⅲ)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
已知都是正数, (1)若,求的最大值 (2)若,求的最小值.
已知函数, (1)当时,解不等式 (2)若函数有最大值,求实数的值.
已知数列是等差数列,且 (1)求数列的通项公式 (2)令,求数列前n项和.
已知是关于的方程的两个根,且. (1)求出与之间满足的关系式; (2)记,若存在,使不等式在其定义域范围内恒成立,求的取值范围.
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点. (1)求三棱锥的体积; (2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.