设椭圆的离心率,右焦点到直线的距离,为坐标原点(1)求椭圆的方程;(2)若直线斜率存在且与椭圆交于两点,以为直径的圆过原点,求到直线的距离
已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,且满足||||+·=0.(1)求点P的轨迹C的方程;(2)设过点N的直线l的斜率为k,且与曲线C相交于点S、T,若S、T两点只在第二象限内运动,线段ST的垂直平分线交x轴于Q点,求Q点横坐标的取值范围.
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?证明你的结论.
(12分)已知数列是各项均不为0的等差数列,为其前项和,且满足,令,数列的前n项和为.(Ⅰ)求数列的通项公式及数列的前n项和;(Ⅱ)是否存在正整数,使得成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
(文)(本小题满分12分)在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是. (1)求乙、丙两人各自回答对这道题的概率. (2)求甲、乙、丙三人中恰有两人回答对该题的概率
(本小题满分12分)从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.