在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:,过点P(-2,-4)的直线的参数方程为(t为参数)与C分别交于M,N.(1)写出C的平面直角坐标系方程和的普通方程;(2)若,,成等比数列,求a 的值.
(本小题满分12分)已知抛物线:和点,若抛物线上存在不同两点、满足. (I)求实数的取值范围; (II)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
(本小题满分12分)如图,五面体中, ,底面ABC是正三角形,=2.四边形是矩形,二面角为直二面角,D为中点。 (I)证明:平面; (II)求二面角的余弦值.
(本小题满分12分)电信公司进行促销活动,促销方案为顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为,中奖后电信公司返还顾客现金1000元,小李购买一台价格2400元的手机,只能得2张奖券,于是小李补偿50元给同事购买一台价格600元的小灵通(可以得到三张奖券),小李抽奖后实际支出为X(元). (I)求X的分布列;(II)试说明小李出资50元增加1张奖券是否划算。
(本小题满分12分)在中,角的对边分别为,且成等差数列。 (Ⅰ)若,且,求的值; (Ⅱ)求的取值范围。
设函数. (1)画出函数y=f(x)的图像; (2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.