如图:①写出A、B、C三点的坐标.A ( ) B( ) C( )②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点 A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系?③在②的基础上,纵坐标都不变,横坐标都乘以-1在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC有怎样的位置关系?
如图1,将 ΔABC 纸片沿中位线 EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰 ΔBED 和等腰 ΔDHC 的底边上的高线 EF , HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将 ▱ ABCD 纸片按图2的方式折叠成一个叠合矩形 AEFG ,则操作形成的折痕分别是线段 , ; S 矩形 AEFG : S ▱ ABCD = .
(2) ▱ ABCD 纸片还可以按图3的方式折叠成一个叠合矩形 EFGH ,若 EF = 5 , EH = 12 ,求 AD 的长;
(3)如图4,四边形 ABCD 纸片满足 AD / / BC , AD < BC , AB ⊥ BC , AB = 8 , CD = 10 ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD 、 BC 的长.
如图,已知: AB 是 ⊙ O 的直径,点 C 在 ⊙ O 上, CD 是 ⊙ O 的切线, AD ⊥ CD 于点 D , E 是 AB 延长线上一点, CE 交 ⊙ O 于点 F ,连接 OC 、 AC .
(1)求证: AC 平分 ∠ DAO .
(2)若 ∠ DAO = 105 ° , ∠ E = 30 °
①求 ∠ OCE 的度数;
②若 ⊙ O 的半径为 2 2 ,求线段 EF 的长.
甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 O 点正上方 1 m 的 P 处发出一球,羽毛球飞行的高度 y ( m ) 与水平距离 x ( m ) 之间满足函数表达式 y = a ( x - 4 ) 2 + h ,已知点 O 与球网的水平距离为 5 m ,球网的高度为 1 . 55 m .
(1)当 a = - 1 24 时,①求 h 的值;②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点 O 的水平距离为 7 m ,离地面的高度为 12 5 m 的 Q 处时,乙扣球成功,求 a 的值.
某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
如图,在平面直角坐标系中, ΔABC 各顶点的坐标分别为 A ( - 2 , - 2 ) , B ( - 4 , - 1 ) , C ( - 4 , - 4 ) .
(1)作出 ΔABC 关于原点 O 成中心对称的△ A 1 B 1 C 1 ;
(2)作出点 A 关于 x 轴的对称点 A ' ,若把点 A ' 向右平移 a 个单位长度后落在△ A 1 B 1 C 1 的内部(不包括顶点和边界),求 a 的取值范围.