如图所示,(1)过点C能画出几条与直线AB平行的直线?(2)过点D与直线AB平行的直线与(1)中所画的直线平行吗?(3)由(2)你发现了什么结论?
小黄准备给长 8 m ,宽 6 m 的长方形客厅铺设瓷砖,现将其划分成一个长方形 ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足 PQ / / AD ,如图所示.
(1)若区域Ⅰ的三种瓷砖均价为300元 / m 2 ,面积为 S ( m 2 ) ,区域Ⅱ的瓷砖均价为200元 / m 2 ,且两区域的瓷砖总价为不超过12000元,求 S 的最大值;
(2)若区域Ⅰ满足 AB : BC = 2 : 3 ,区域Ⅱ四周宽度相等
①求 AB , BC 的长;
②若甲、丙两瓷砖单价之和为300元 / m 2 ,乙、丙瓷砖单价之比为 5 : 3 ,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.
如图,过抛物线 y = 1 4 x 2 − 2 x 上一点 A 作 x 轴的平行线,交抛物线于另一点 B ,交 y 轴于点 C ,已知点 A 的横坐标为 − 2 .
(1)求抛物线的对称轴和点 B 的坐标;
(2)在 AB 上任取一点 P ,连接 OP ,作点 C 关于直线 OP 的对称点 D ;
①连接 BD ,求 BD 的最小值;
②当点 D 落在抛物线的对称轴上,且在 x 轴上方时,求直线 PD 的函数表达式.
如图,在 ΔABC 中, AC = BC , ∠ ACB = 90 ° , ⊙ O (圆心 O 在 ΔABC 内部)经过 B 、 C 两点,交 AB 于点 E ,过点 E 作 ⊙ O 的切线交 AC 于点 F .延长 CO 交 AB 于点 G ,作 ED / / AC 交 CG 于点 D
(1)求证:四边形 CDEF 是平行四边形;
(2)若 BC = 3 , tan ∠ DEF = 2 ,求 BG 的值.
在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点 A ( 2 , 3 ) , B ( 4 , 4 ) ,请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个 ΔPAB ,使点 P 的横、纵坐标之和等于点 A 的横坐标;
(2)在图2中画一个 ΔPAB ,使点 P , B 横坐标的平方和等于它们纵坐标和的4倍.
为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).
(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.
(2)学校将选“数学故事”的学生分成人数相等的 A , B , C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在 A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)