(本小题满分13分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.(1)求证:平面;(2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.
已知不等式的解集是 (1)求实数的取值集合M; (2) 若,∈M,试比较与的大小
在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:交于A、B两点。 (1)求|AB|的长 (2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。
已知。 (1)若不等式对任意实数恒成立,求实数的取值范围;(2)若,解不等式。
某人上午7:00时,乘摩托车以匀速千米/时从A地出发到相距50千米的地去,然后乘汽车以匀速千米/时自地向相距300千米的C地驶去,要求在当天16:00时至21:00时这段时间到达C地.设汽车所需要的时间为小时, 摩托车所需要的时间为小时. (1)写出满足上述要求的的约束条件; (2)如果途中所需的经费为,且(元),那么, 分别是多少时所要的经费最少?此时需花费多少元?
已知向量,函数 (1)求函数的值域; (2)已知分别为△ABC内角A,B,C的对边,,且,求A和△ABC面积的最大值。