(本小题共13分)已知函数,为其导函数,且时有极小值. (Ⅰ)求的单调递减区间;(Ⅱ)若不等式(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据:)
若下列方程:,,,至少有一个方程有实根,试求实数的取值范围.
用分析法证明:若,则.
证明:如果求证:
设函数,(Ⅰ)求的单调区间; (Ⅱ)若方程在上有两个实数解,求实数t的取值范围; (Ⅲ)是否存在实数,使曲线与曲线及直线所围图形的面积为,若存在,求出一个的值,若不存在说明理由.
一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?