如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点出发,沿AC向点C移动.同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止.设移动的时间为t秒.(1)当t=2.5秒时,求△CPQ的面积;(2)求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(3)在P,Q移动过程中,当△CPQ为等腰三角形时,写出t的值;
在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF. (1)当点E在BC的延长线上,D为AB的中点时,如图1所示. ①求证:∠EGC=∠AEC; ②若DF=3,求BE的长度; (2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.
在某节习题课上,老师在黑板上写下了关于x的二次函数y=kx2+(k+1)x+2-4k. (1)某两位同学经过思考,对上述的二次函数进行了如下总结: ①该二次函数的图象经过点(1,3); ②当k<0时,该二次函数的图象与y轴的正半轴有交点; 请你判断上面两条结论是真命题还是假命题,并说明理由; (2)若二次函数y=kx2+(k+1)x+2-4k的图象如图所示,该函数图象经过点B(-3,1)且与y轴交于点A,与x轴的负半轴交于点C,D为图象的顶点. ①求∠BAD的度数; ②点M在第三象限,且点M在二次函数图象上,连接OM.若∠ABD=∠MOC,求点M的横坐标.
如图,BE是⊙O的直径,点A,C,D,F都在⊙O上,,连接CE,M是CE的中点,延长DE到点G,使得EG=DE,并且交AF的延长线于点G,此时F恰为AG的中点. (1)若∠CDE=120°,CE=4,求⊙O的周长. (2)求证:2FE=CE. (3)试探索:在上是否存在一点N,使得四边形NMEF是轴对称图形,并说明理由.
罗非鱼又名非洲鲫鱼,是一种中小型鱼,每年的10月份是罗非鱼的捕捞期,某渔民有两个罗非鱼养殖鱼塘,在捕捞前期,为了估计鱼塘中罗非鱼的质量,该渔民从第一个鱼塘中随机捕捞若干条罗非鱼称得它们的质量(单位;kg),并将所得的数据绘制成了如图1图2所示的统计图(不完整) (1)求该渔民所捞的罗非鱼的质量平均数、中位数和众数. (2)当此渔民将罗非鱼的质量数据绘制成如图2所示的扇形统计图时,因某些原因没有标完数据,他只记得A扇形的圆心为36°,B扇形的中心角为84°,求A,B两个扇形分别表示的是哪种质量的罗非鱼; (3)在同一时期,该渔民在第二个鱼塘捕捞了和第一个鱼塘相同条数的罗非鱼,并且求出罗非鱼质量的平均数也和第一个鱼塘的相同,但该鱼塘所捕捞的罗非鱼的质量的方差比第一个鱼塘的方差小,试判断哪个鱼塘的罗非鱼的质量的波动性较小.
已知关于x的不等式组. (1)求该不等式组的解集; (2)a,b都是该不等式组的整数解,求代数式a2-b2的值.