从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于和之间,将测量结果按如下方式分成八组:第一组,第二组,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。(Ⅰ)求第七组的频率;(Ⅱ)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求
(1)解不等式: (2)求值:
已知函数 (1)求证:函数在上为单调增函数; (2)设,求的值域; (3)对于(2)中函数,若关于的方程有三个不同的实数解,求的取值范围.
已知函数是定义在上的奇函数,且当时,. (1)当时,求函数的解析式; (2)若函数为单调递减函数; ①直接写出的范围(不必证明); ②若对任意实数,恒成立,求实数的取值范围.
已知二次函数的图像关于直线对称,且在轴上截得的线段长为2.若的最小值为,求: (1)函数的解析式; (2)函数在上的最小值.
病人按规定的剂量服用某药物,测得服药后,每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数(为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线. (1)求函数的解析式; (2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?