已知函数>0,>0,<的图像与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)求的解析式及的值;(2)若锐角满足,求的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长.
设函数.(1)求的单调区间和极值;(2)若,当时,在区间内存在极值,求整数的值.
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线(1)求曲线C的方程,(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,三棱柱的侧棱平面,为等边三角形,侧面是正方形,是的中点,是棱上的点.(1)若是棱中点时,求证:平面;(2)当时,求正方形的边长.
某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.