已知函数的定义域集合是A,函数的定义域集合是B(1)求集合A、B(2)若AB=B,求实数的取值范围.
在直角坐标系 xOy 中,曲线 C 的参数方程为 x = 2 cosθ y = 4 sinθ ( θ 为参数),直线 l 的参数方程为 x = 1 + tcosα y = 2 + tsinα ( t 为参数).
(1)求 C 和 l 的直角坐标方程;
(2)若曲线 C 截直线 l 所得线段的中点坐标为 1 , 2 ,求 l 的斜率.
已知函数 f x = 1 3 x 3 - a x 2 + x + 1 .
(1)若 a = 3 ,求 f x 的单调区间;
(2)证明: f x 只有一个零点.
设抛物线 C : y 2 = 4 x 的焦点为 F ,过 F 且斜率为 k ( k > 0 ) 的直线 l 与 C 交于 A , B 两点, | AB | = 8 .
(1)求 l 的方程;
(2)求过点 A , B 且与 C 的准线相切的圆的方程.
如图,在三棱锥 P - ABC 中, AB = BC = 2 2 , PA = PB = PC = AC = 4 , O 为 AC 的中点.
(1)证明: PO ⊥ 平面 ABC ;
(2)若点 M 在棱 BC 上,且 MC = 2 MB ,求点 C 到平面 POM 的距离.
下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , 即 α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x ≥ 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.