已知抛物线的焦点为,点关于坐标原点对称,以为焦点的椭圆,过点(Ⅰ)求椭圆的标准方程;(Ⅱ)设,过点作直线与椭圆交于两点,且,若,求的最小值。
已知曲线C1:y=x2与C2:y=-(x-2)2,直线l与C1、C2都相切,求直线l的方程.
求和Sn=12+22x+32x2+…+n2xn-1,(x≠0,n∈N*).
有一个长度为5 m的梯子贴靠在笔直的墙上,假设其下端沿地板以3 m/s的速度离开墙脚滑动,求当其下端离开墙脚1.4 m时,梯子上端下滑的速度.
求函数的导数(1)y=(x2-2x+3)e2x;(2)y=.
已知曲线C:y=x3-3x2+2x,直线l:y=kx,且l与C切于点(x0,y0)(x0≠0),求直线l的方程及切点坐标。