(本小题满分13分)如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为、,试在“8”字形曲线上求点,使得是直角.
((本小题12分) 函数f(x)= 4x3+ax2+bx+5的图像在x=1处的切线方程为y=-12x; (1)求函数f(x)的解析式; (2)求函数f(x)在 [—3,1]上的最值。
(本小题12分) 已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.(1)求k,b的值,并写出数列{an}的通项公式; (2)记,求数列{bn}的前n和Sn.
(本小题10分) 围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元). (1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小, 并求出最小总费用.
(本小题10分)在△ABC中,角A,B,C的对边分别为,且满足,. (1)求△ABC的面积. (2)若,求的值.
((本小题12分) 已知指数函数满足:g(2)=4,定义域为的函数是奇函数。 (1)确定的解析式; (2)求m,n的值; (3)若对任意的,不等式恒成立,求实数的取值范围。