已知抛物线()的准线与轴交于点.(1)求抛物线的方程,并写出焦点坐标;(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
如图,在四棱锥中,底面是正方形,底面,分别是的中点,且. (Ⅰ)求证:平面; (Ⅱ)求证:平面⊥平面.
(本小题满分12分)已知分别为三个内角的对边,. (1)求的大小; (2)若= 7,求的周长的取值范围.
若二次函数,满足且=2. (1)求函数的解析式; (2)若存在,使不等式成立,求实数m的取值范围.
正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)求证:; (2)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值.