如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.(Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.
已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈时,函数f(x)=x+>恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围.
命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sin mx的周期小于,试判断p∨q,p∧q,p的真假性.
已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若命题“A∩B=∅”是假命题,求实数m的取值范围.
已知集合A=,B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.
已知集合A=,B={x|m+1≤x≤2m-1}. (1)求集合A; (2)若B⊆A,求实数m的取值范围.