(本小题满分14分)设函数R,且为的极值点.(1)当时,求的单调递减区间; (2)若恰有两解,试求实数的取值范围;(3)在(1)的条件下,设,证明:.
已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.(1)求数列{an},{bn}的通项公式;(2)设cn=an-bn,求数列{cn}的前2n项和T2n.
如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(1)求证:平面AA1B1B⊥平面BB1C1C;(2)若AB=2,求三棱柱ABC—A1B1C1的体积.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;(2)求多面体ABCDE的体积.
在△ABC中,角A,B,C所对边的边长分别是a,b,c.(1)若c=2,C=且△ABC的面积等于,求cos(A+B)和a,b的值;(2)若B是钝角,且cos A=,sin B=,求sin C的值.
已知圆C的方程为:x2+y2-2mx-2y+4m-4=0(m∈R).(1)试求m的值,使圆C的面积最小;(2)求与满足(1)中条件的圆C相切,且过点(1,-2)的直线方程.