(本小题满分7分)选修4-4:坐标系与参数方程已知直线的参数方程:(为参数)和圆的极坐标方程:.(1)求圆的直角坐标方程;(2)判断直线与圆的位置关系.
、一个正三棱柱的底面边长是4,高是6,过下底面的一条边和该边所对的上底面的顶点作截面,求这个截面面积。
已知直线及定点P(3,-2)依下列条件求直线l1和l2的方程:(1)l1过点P且l1// l;(2)l2过点P且l2⊥l
如图所示,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC
设的外心为O,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H 。(1)若用;(2)求证:;(3)设中,外接圆半径为R, 用 R表示.(外心是三角形外接圆的圆心)
某地区有三座工厂分别位于△ABC的三个顶点,已知 、. 为了处理三个工 厂的污水,现要在△ABC区域内(不包括边界)且与B、C等距的一点O处建立一个污水处理厂,并铺设排污管道OA、OB、OC.设,当排污管道总长取最小值时,求的值.